C++反汇编入门16.位域
# 位域很多函数参数的输入标志使用了位域。当然,可以使用bool类型来替代,只是有点浪费。
## 17.1 Specific bit checking
### 17.1.1 x86
Win32 API 例子:
```
HANDLE fh;
fh=CreateFile("file", GENERIC_WRITE | GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
```
MSVC 2010: Listing 17.1: MSVC 2010
```
push 0
push 128 ; 00000080H
push 4
push 0
push 1
push -1073741824 ; c0000000H
push OFFSET $SG78813
call DWORD PTR __imp__CreateFileA@28
mov DWORD PTR _fh$, eax
```
我们再查看WinNT.h:
Listing 17.2: WinNT.h
```
#define GENERIC_READ (0x80000000L)
#define GENERIC_WRITE (0x40000000L)
#define GENERIC_EXECUTE (0x20000000L)
#define GENERIC_ALL (0x10000000L)
```
容易看出GENERIC_READ | GENERIC_WRITE = 0x80000000 | 0x40000000 = 0xC0000000,该值作为CreateFile()1函数的第二个参数。 CreateFile()如何检查该标志呢? 以Windows XP SP3 x86为例,在kernel32.dll中查看CreateFileW检查该标志的代码片段: Listing 17.3: KERNEL32.DLL (Windows XP SP3 x86)
```
.text:7C83D429 test byte ptr , 40h
.text:7C83D42D mov , 1
.text:7C83D434 jz short loc_7C83D417
.text:7C83D436 jmp loc_7C810817
```
我们来看TEST指令,该指令并未检测整个第二个参数,仅检测关键的一个字节(ebp+dwDesiredAccess+3),检测0x40标志(这里代表GENERIC_WRITE标志)。 Test对两个参数(目标,源)执行AND逻辑操作,并根据结果设置标志寄存器,结果本身不会保存(CMP和SUB与此类似(6.6.1))。 该代码片段逻辑如下:
`if ((dwDesiredAccess&0x40000000) == 0) goto loc_7C83D417`
如果AND指令没有设置ZF位,JZ将不触发跳转。如果dwDesiredAccess不等于0x40000000,AND结果将是0,ZF位将会被设置,条件跳转将被触发。
我们在linux GCC 4.4.1下查看:
```
#include <stdio.h>
#include <fcntl.h>
void main()
{
int handle;
handle=open ("file", O_RDWR | O_CREAT);
};
```
我们得到: Listing 17.4: GCC 4.4.1
```
public main
main proc near
var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
mov , 42h
mov , offset aFile ; "file"
call _open
mov , eax
leave
retn
main endp
```
我们在libc.so.6库中查看open()函数,看到syscall: Listing 17.5: open() (libc.so.6)
```
.text:000BE69B mov edx, ; mode
.text:000BE69F mov ecx, ; flags
.text:000BE6A3 mov ebx, ; filename
.text:000BE6A7 mov eax, 5
.text:000BE6AC int 80h ; LINUX - sys_open
```
因此open()对于标志位的检测在内核中。 对于linux2.6,当sys_open被调用时,最终传递到do_sys_open内核函数,然后进入do_filp_open()函数(该函数位于源码fs/namei.c中)。 除了通过堆栈传递参数,还可以通过寄存器传递方式,这种调用方式成为fastcall(47.3)。这种调用方式CPU不需要访问堆栈就可以直接读取参数的值,所以速度更快。GCC有编译选项regram2,可以设置通过寄存器传递的参数的个数。 Linux2.6内核编译附加选项为-mregram=33 4。 这意味着前3个参数通过EAX、EDX、ECX寄存器传递,剩余的参数通过堆栈传递。如果参数小于3,仅部分寄存器被使用。 我们下载linux内核2.6.31源码,在Ubuntu中编译:make vmlinux,在IDA中打开,找到do_filp_open()函数。在开始部分我们可以看到(注释个人添加): Listing 17.6:do_filp_open() (linux kernel 2.6.31)
```
do_filp_open proc near
...
push ebp
mov ebp, esp
push edi
push esi
push ebx
mov ebx, ecx
add ebx, 1
sub esp, 98h
mov esi, ; acc_mode (5th arg)
test bl, 3
mov , eax ; dfd (1th arg)
mov , edx ; pathname (2th arg)
mov , ecx ; open_flag (3th arg)
jnz short loc_C01EF684
mov ebx, ecx ; ebx <- open_flag
```
GCC保存3个参数的值到堆栈。否则,可能会造成寄存器浪费。 我们来看代码片段: Listing 17.7: do_filp_open() (linux kernel 2.6.31)
```
loc_C01EF6B4: ; CODE XREF: do_filp_open+4F
test bl, 40h ; O_CREAT
jnz loc_C01EF810
mov edi, ebx
shr edi, 11h
xor edi, 1
and edi, 1
test ebx, 10000h
jz short loc_C01EF6D3
or edi, 2
```
O_CREAT宏等于0x40,如果open_flag为0x40,标志位被置1,接下来的JNZ指令将被触发。
### 17.1.2 ARM
Linux kernel3.8.0检测O_CREAT过程有点不同。 Listing 17.8: linux kernel 3.8.0
```
struct file *do_filp_open(int dfd, struct filename *pathname, const struct open_flags *op)
{
... filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); ...
}
static struct file *path_openat(int dfd, struct filename *pathname, struct nameidata *nd, const struct open_flags *op, int flags)
{
... error = do_last(nd, &path, file, op, &opened, pathname); ...
}
static int do_last(struct nameidata *nd, struct path *path, struct file *file, const struct open_flags *op, int *opened, struct filename *name)
{
...
if (!(open_flag & O_CREAT)) {
...
error = lookup_fast(nd, path, &inode);
...
} else {
... error = complete_walk(nd);
}
...
}
```
在IDA中查看ARM模式内核: Listing 17.9: do_last() (vmlinux)
```
...
.text:C0169EA8 MOV R9, R3 ; R3 - (4th argument) open_flag
...
.text:C0169ED4 LDR R6, ; R6 - open_flag
...
.text:C0169F68 TST R6, #0x40 ; jumptable C0169F00 default case
.text:C0169F6C BNE loc_C016A128
.text:C0169F70 LDR R2,
.text:C0169F74 ADD R12, R4, #8
.text:C0169F78 LDR R3,
.text:C0169F7C MOV R0, R4
.text:C0169F80 STR R12,
.text:C0169F84 LDRB R3,
.text:C0169F88 MOV R2, R8
.text:C0169F8C CMP R3, #0
.text:C0169F90 ORRNE R1, R1, #3
.text:C0169F94 STRNE R1,
.text:C0169F98 ANDS R3, R6, #0x200000
.text:C0169F9C MOV R1, R12
.text:C0169FA0 LDRNE R3,
.text:C0169FA4 ANDNE R3, R3, #1
.text:C0169FA8 EORNE R3, R3, #1
.text:C0169FAC STR R3,
.text:C0169FB0 SUB R3, R11, #-var_38
.text:C0169FB4 BL lookup_fast
...
.text:C016A128 loc_C016A128 ; CODE XREF: do_last.isra.14+DC
.text:C016A128 MOV R0, R4
.text:C016A12C BL complete_walk
...
```
TST指令类似于x86下的TEST指令。 这段代码来自do_last()函数源码,有两个分支lookup_fast()和complete_walk()。这里O_CREAT宏也等于0x40。
## 17.2 Specific bit setting/clearing
例如:
```
#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT(var, bit) ((var) &= ~(bit))
int f(int a)
{
int rt=a;
SET_BIT (rt, 0x4000);
REMOVE_BIT (rt, 0x200);
return rt;
};
```
### 17.2.1 x86
MSVC 2010: Listing 17.10: MSVC 2010
```
_rt$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC
push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$
mov DWORD PTR _rt$, eax
mov ecx, DWORD PTR _rt$
or ecx, 16384 ; 00004000H
mov DWORD PTR _rt$, ecx
mov edx, DWORD PTR _rt$
and edx, -513 ; fffffdffH
mov DWORD PTR _rt$, edx
mov eax, DWORD PTR _rt$
mov esp, ebp
pop ebp
ret 0
_f ENDP
```
OR指令添加一个或多个bit位而忽略了其余位。 AND用来重置一个bit位。 如果我们使用msvc编译,并且打开优化选项(/Ox),代码将会更短: Listing 17.11: Optimizing MSVC
```
_a$ = 8 ; size = 4
_f PROC
mov eax, DWORD PTR _a$
and eax, -513 ; fffffdffH
or eax, 16384 ; 00004000H
ret 0
_f ENDP
```
我们来看GCC 4.4.1无优化的代码:
```
public f
f proc near
var_4 = dword ptr -4
arg_0 = dword ptr 8
push ebp
mov ebp, esp
sub esp, 10h
mov eax,
mov , eax
or , 4000h
and , 0FFFFFDFFh
mov eax,
leave
retn
f endp
```
MSVC未优化的代码有些冗余。 现在我们来看GCC打开优化选项-O3:
Listing 17.13: Optimizing GCC
```
public f
f proc near
arg_0 = dword ptr 8
push ebp
mov ebp, esp
mov eax,
pop ebp
or ah, 40h
and ah, 0FDh
retn
f endp
```
代码更短。值得注意的是编译器使用了AH寄存器-EAX寄存器8bit-15bit部分。
![](./mdimg/Chapter-17/1.jpg)
8086 16位CPU累加器被称为AX,包含两个8位部分-AL(低字节)和AH(高字节)。在80386下所有寄存器被扩展为32位,累加器被命名为EAX,为了保持兼容性,它的老的部分仍可以作为AX/AH/AL寄存器来访问。 因为所有的x86 CPU都兼容于16位CPU,所以老的16位操作码比32位操作码更短。”or ah,40h”指令仅复制3个字节比“or eax,04000h”需要复制5个字节甚至6个字节(如果第一个操作码不是EAX)更合理。 编译时候开启-O3并且设置regram=3生成的代码会更短。
Listing 17.14: Optimizing GCC
```
public f
f proc near
push ebp
or ah, 40h
mov ebp, esp
and ah, 0FDh
pop ebp
retn
f endp
```
事实上,第一个参数已经被加载到EAX了,所以可以直接使用了。值得注意的是,函数序言(push ebp/mov ebp,esp)和结语(pop ebp)很容易被忽略。GCC并没有优化掉这些代码。更短的代码可以使用内联函数(27)。
### 17.2.2 ARM + Optimizing Keil + ARM mode
Listing 17.15: Optimizing Keil + ARM mode
```
02 0C C0 E3 BIC R0, R0, #0x200
01 09 80 E3 ORR R0, R0, #0x4000
1E FF 2F E1 BXLR
```
BIC是“逻辑and“类似于x86下的AND。ORR是”逻辑or“类似于x86下的OR。
### 17.2.3 ARM + Optimizing Keil + thumb mode
Listing 17.16: Optimizing Keil + thumb mode
```
01 21 89 03 MOVS R1, 0x4000
08 43 ORRS R0, R1
49 11 ASRS R1, R1, #5 ; generate 0x200 and place to R1
88 43 BICS R0, R1
70 47 BX LR5
```
从0x4000右移生成0x200,采用移位使代码更简洁。
### 17.2.4 ARM + Optimizing Xcode (LLVM) + ARM mode
Listing 17.17: Optimizing Xcode (LLVM) + ARM mode
```
42 0C C0 E3 BIC R0, R0, #0x4200
01 09 80 E3 ORR R0, R0, #0x4000
1E FF 2F E1 BXLR
```
该代码由LLVM生成,从源码形式上看,看起来更像是:
```
REMOVE_BIT (rt, 0x4200);
SET_BIT (rt, 0x4000);
```
为什么是0x4200?可能是编译器构造的5,可能是编译器编译错误,但生成的代码是可用的。 更多编译器异常请参考相关资料(67)。 对于thumb模式,优化Xcode(LLVM)生成的代码相似。
## 17.3 Shifts
C/C++的移位操作通过<<和>>实现。 这里有一个例子函数,计算输入变量有多少个位被置为1.
#define IS_SET(flag, bit) ((flag) & (bit))
int f(unsigned int a)
{
int i;
int rt=0;
for (i=0; i<32; i++)
if (IS_SET (a, 1<<i))
rt++;
return rt;
};
在循环中,迭代计数从0到31,1<<i语句将计数从1到0x80000000。1<<i即1左移n位,将包含32位数字所有可能的bit位。每次移位仅有1位被置1,其它位均为0,IS_SET宏将判断a对应的位是否置1。
![](./mdimg/Chapter-17/2.jpg)
IS_SET宏就是逻辑与(AND)操作,如果对应的位不为1,则返回0。if条件表达式如果不为0,if()将被触发。
## 17.3.1 x86
MSVC 2010:
Listing 17.18: MSVC 2010
```
_rt$ = -8 ; size = 4
_i$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC
push ebp
mov ebp, esp
sub esp, 8
mov DWORD PTR _rt$, 0
mov DWORD PTR _i$, 0
jmp SHORT $LN4@f
$LN3@f:
mov eax, DWORD PTR _i$ ; increment of 1
add eax, 1
mov DWORD PTR _i$, eax
$LN4@f:
cmp DWORD PTR _i$, 32 ; 00000020H
jge SHORT $LN2@f ; loop finished?
mov edx, 1
mov ecx, DWORD PTR _i$
shl edx, cl ; EDX=EDX<<CL
and edx, DWORD PTR _a$
je SHORT $LN1@f ; result of AND instruction was 0?
; then skip next instructions
mov eax, DWORD PTR _rt$ ; no, not zero
add eax, 1 ; increment rt
mov DWORD PTR _rt$, eax
$LN1@f:
jmp SHORT $LN3@f
$LN2@f:
mov eax, DWORD PTR _rt$
mov esp, ebp
pop ebp
ret 0
_f ENDP
```
下面是GCC 4.4.1编译的代码: Listing 17.19: GCC 4.4.1
```
public f
f proc near
rt = dword ptr -0Ch
i = dword ptr -8
arg_0 = dword ptr 8
push ebp
mov ebp, esp
push ebx
sub esp, 10h
mov , 0
mov , 0
jmp short loc_80483EF
loc_80483D0:
mov eax,
mov edx, 1
mov ebx, edx
mov ecx, eax
shl ebx, cl
mov eax, ebx
and eax,
test eax, eax
jz short loc_80483EB
add , 1
loc_80483EB:
add , 1
loc_80483EF:
cmp , 1Fh
jle short loc_80483D0
mov eax,
add esp, 10h
pop ebx
pop ebp
retn
f endp
```
在乘以或者除以2的指数值(1,2,4,8等)时经常使用移位操作。 例如:
```
unsigned int f(unsigned int a)
{
return a/4;
};
```
MSVC 2010: Listing 17.20: MSVC 2010
```
_a$ = 8 ; size = 4
_f PROC
mov eax, DWORD PTR _a$
shr eax, 2
ret 0
_f ENDP
```
例子中的SHR(逻辑右移)指令将a值右移2位,最高两位被置0,最低2位被丢弃。实施上丢弃的两位是除法的余数。 SHR作用类似SHL只是移位方向不同。
![](./mdimg/Chapter-17/3.jpg)
使用十进制23很好来理解。23除以10,丢弃最后的数字(3是余数),商为2。 与此类似的是乘法。比如乘以4,仅需将数字左移2位,最低两位被置0。就像3乘以100—仅仅在最后补两个0就行了。
### 17.3.2 ARM + Optimizing Xcode (LLVM) + ARM mode
Listing 17.21: Optimizing Xcode (LLVM) + ARM mode
```
MOV R1, R0
MOV R0, #0
MOV R2, #1
MOV R3, R0
loc_2E54
TST R1, R2,LSL R3 ; set flags according to R1 & (R2<<R3)
ADD R3, R3, #1 ; R3++
ADDNE R0, R0, #1 ; if ZF flag is cleared by TST, R0++
CMP R3, #32
BNE loc_2E54
BX LR
```
TST类似于x86下的TEST指令。 正如我前面提到的(14.2.1),ARM模式下没有单独的移位指令。对于用作修饰的LSL(逻辑左移)、LSR(逻辑右移)、ASR(算术右移)、ROR(循环右移)和RRX(带扩展的循环右移指令),需要与MOV,TST,CMP,ADD,SUB,RSB结合来使用6。 这些修饰指令被定义,第二个操作数指定移动的位数。 因此“TST R1, R2,LSL R3”指令所做的工作为????1 ∧ (????2 ≪ ????3).
### 17.3.3 ARM + Optimizing Xcode (LLVM) + thumb-2 mode
几乎一样,只是这里使用LSL.W/TST指令而不是只有TST。因为Thumb模式下TST没有定义修饰符LSL。
```
MOV R1, R0
MOVS R0, #0
MOV.W R9, #1
MOVS R3, #0
loc_2F7A
LSL.W R2, R9, R3
TST R2, R1
ADD.W R3, R3, #1
IT NE
ADDNE R0, #1
CMP R3, #32
BNE loc_2F7A
BX LR
```
### 17.4 CRC32哈希散列计算例子
这是非常流行的CRC32哈希散列计算。
```
/* By Bob Jenkins, (c) 2006, Public Domain */
#include <stdio.h>
#include <stddef.h>
#include <string.h>
typedef unsigned long ub4;
typedef unsigned char ub1;
static const ub4 crctab = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,
};
/* how to derive the values in crctab[] from polynomial 0xedb88320 */
void build_table()
{
ub4 i, j;
for (i=0; i<256; ++i) {
j = i;
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
printf("0x%.8lx, ", j);
if (i%6 == 5) printf("");
}
}
/* the hash function */
ub4 crc(const void *key, ub4 len, ub4 hash)
{
ub4 i;
const ub1 *k = key;
for (hash=len, i=0; i<len; ++i)
hash = (hash >> 8) ^ crctab[(hash & 0xff) ^ k];
return hash;
}
/* To use, try "gcc -O crc.c -o crc; crc < crc.c" */
int main()
{
char s;
while (gets(s)) printf("%.8lx", crc(s, strlen(s), 0));
return 0;
}
```
我们只关心crc()函数。注意for()语句两个循环初始化:hash=len,i=0。标准C/C++允许这样做。循环体内通常需要使用两个初始化部分。 让我们用MSVC优化(/Ox)。为了简洁,仅列出crc()函数的代码,包括我做的注释。
```
key$ = 8 ; size = 4
_len$ = 12 ; size = 4
_hash$ = 16 ; size = 4
_crc PROC
mov edx, DWORD PTR _len$
xor ecx, ecx ; i will be stored in ECX
mov eax, edx
test edx, edx
jbe SHORT $LN1@crc
push ebx
push esi
mov esi, DWORD PTR _key$ ; ESI = key
push edi
$LL3@crc:
; work with bytes using only 32-bit registers. byte from address key+i we store into EDI
movzx edi, BYTE PTR
mov ebx, eax ; EBX = (hash = len)
and ebx, 255 ; EBX = hash & 0xff
; XOR EDI, EBX (EDI=EDI^EBX) - this operation uses all 32 bits of each register
; but other bits (8-31) are cleared all time, so it’s OK
; these are cleared because, as for EDI, it was done by MOVZX instruction above
; high bits of EBX was cleared by AND EBX, 255 instruction above (255 = 0xff)
xor edi, ebx
; EAX=EAX>>8; bits 24-31 taken "from nowhere" will be cleared
shr eax, 8
; EAX=EAX^crctab - choose EDI-th element from crctab[] table
xor eax, DWORD PTR _crctab
inc ecx ; i++
cmp ecx, edx ; i<len ?
jb SHORT $LL3@crc ; yes
pop edi
pop esi
pop ebx
$LN1@crc:
ret 0
_crc ENDP
```
我们来看GCC 4.4.1优化后的代码:
```
public crc
crc proc near
key = dword ptr 8
hash = dword ptr 0Ch
push ebp
xor edx, edx
mov ebp, esp
push esi
mov esi,
push ebx
mov ebx,
test ebx, ebx
mov eax, ebx
jz short loc_80484D3
nop ; padding
lea esi, ; padding; ESI doesn’t changing here
loc_80484B8:
mov ecx, eax ; save previous state of hash to ECX
xor al, ; AL=*(key+i)
add edx, 1 ; i++
shr ecx, 8 ; ECX=hash>>8
movzx eax, al ; EAX=*(key+i)
mov eax, dword ptr ds:crctab ; EAX=crctab
xor eax, ecx ; hash=EAX^ECX
cmp ebx, edx
ja short loc_80484B8
loc_80484D3:
pop ebx
pop esi
pop ebp
retn
crc endp
```
GCC在循环开始的时候通过填入NOP和lea esi,esi+0来按8字节对齐。更多信息请阅读npad小结(64)。
页:
[1]